Titanium as a Biomaterial for Implants

نویسندگان

  • Carlos Oldani
  • Alejandro Dominguez
چکیده

An ideal biomaterial is expected to exhibit properties such as a very high biocompatibility, that is, no adverse tissue response. Also, it must have a density as low as that of bone, high mechanical strength and fatigue resistance, low elastic modulus and good wear resistance. It is very difficult to combine all these properties in only one material. Some metals are used as biomaterials due to their excellent mechanical properties and good biocompatibility. Since the metallic bonds in these materials are essentially non-directional, the position of the metals ions can be altered without destroying the crystal structure, resulting in a plastically deformable solid. This is also an advantage when thinking about the device manufacture technology. The principal disadvantage of metals is its corrosion tendency in an in-vivo environment. Most metals can only be tolerated by the human body in small amounts even as metallic ions. The consequences of corrosion are the disintegration of the material implant, which will weaken the implant and the harmful effect of corrosion products on the surrounding tissues and organs. Some metals are used as passive substitutes for hard tissue replacement such as total hip and knee joints, for fracture healing aids as bone plates and screws, spinal fixation devices and dental implants. Some metallic alloys are used for more active roles, as actuators such as vascular stents, and orthodontic archwires. Metallic biomaterials can be conveniently grouped in the following categories:  Stainless steel  Cobalt base alloys  Titanium base alloys  Specialty metallic alloys Examples of ASTM standards for some of these metallic biomaterials are shown in Table 1. The first metal alloy developed specifically for human use was the “vanadium steel” but it was no longer used in implants because its corrosion resistance is inadequate in vivo. Later in the 1950s, 18-8sMo with very low carbon content (known as 316L) stainless steel was introduced and is actually widely used for implant fabrication. This alloy has a very good resistance to chloride solutions and poor sensitization. The castable CoCrMo alloy has been used for many decades in dentistry and, relatively recently, in making artificial joints. The wrought CoNiCrMo alloy is relatively new, now used for making the stems of prostheses for heavily loaded joints such as the knee and hip. Both alloys have excellent corrosion resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomedical Applications of Titanium and its Alloys

Materials used for biomedical applications cover a wide spectrum and must exhibit specific properties. The most important property of materials used for fabricating implants is biocompatibility, followed by corrosion resistance. The main metallic biomaterials are stainless steels, cobalt alloy, and titanium and titanium alloys. Stainless steel was the first metallic biomaterial used successfull...

متن کامل

Osteoconductive Nanocomposite Coating of Apatite-Wollastonite and Chitosan

Here, we show the importance of the marine biomaterial chitin and its derivative, chitosan, in bioimplant applications. Titanium and titanium alloys have shown high potential for load bearing in bioimplant applications. However, after their application, a bond with living bone often does not develop or the integration of the implants with bone tissue takes several months. Moreover, the surface ...

متن کامل

Influence of Surface Processing on the Biocompatibility of Titanium

Surface conditioning of titanium middle ear implants results in an improved biocompatibility, which can be characterized by the properties of fibroblasts cultured on conditioned surfaces. Titanium has been established as a favorable biomaterial in ossicular chain reconstruction. The epithelization of the surface of the implants is important for their integration and stable positioning in the mi...

متن کامل

Osseointegration of zirconia implants compared with titanium: an in vivo study

BACKGROUND Titanium and titanium alloys are widely used for fabrication of dental implants. Since the material composition and the surface topography of a biomaterial play a fundamental role in osseointegration, various chemical and physical surface modifications have been developed to improve osseous healing. Zirconia-based implants were introduced into dental implantology as an alternative to...

متن کامل

Full regeneration of segmental bone defects using porous titanium implants loaded with BMP-2 containing fibrin gels.

Regeneration of load-bearing segmental bone defects is a major challenge in trauma and orthopaedic surgery. The ideal bone graft substitute is a biomaterial that provides immediate mechanical stability, while stimulating bone regeneration to completely bridge defects over a short period. Therefore, selective laser melted porous titanium, designed and fine-tuned to tolerate full load-bearing, wa...

متن کامل

Titanium Alloys in Orthopaedics

Metallic implants are commonly used in the orthopedic field. Despite the large number of metallic medical devices in use today, they are predominantly make up of only a few metals. Metallic alloys such as titanium continue to be one of the most important components used in orthopaedic implant devices due to favorable properties of high strength, rigidity, fracture toughness and their reliable m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012